Quantum Cryptanalysis of Affine Cipher using Q-Q
Modular Binary Adders and Multipliers

Team: Laavanya Rajan, Sigadapu Bhumika, Mummadisetty Pavan Sai,
Nagaphani Madhav Maganti, Pulicharla Lakshmi Mounika

Abstract

Cryptography secures information by making unauthorized decryption infeasible.
Cryptanalysis traditionally uses brute-force and statistical methods to uncover vulnera-
bilities. However, quantum computing poses new challenges, as algorithms like Grover’s
and Shor’s significantly reduce the complexity of breaking cryptosystems, threatening
many classical schemes. In this assignment we attempt to examine the cryptanalysis
of the affine cipher within the context of quantum advancements, comparing classi-
cal and quantum approaches. Our findings emphasize the transformative impact of
quantum computing on encryption security and the urgent need for quantum-resistant
techniques in a post-quantum era.

1 Affine Ciphers

The Affine Cipher is a monoalphabetic substitution cipher where each letter is mapped to
its numeric equivalent, encrypted using a simple mathematical function, and then converted
back to a letter. The encryption and decryption processes involve modular arithmetic,
making it both straightforward and effective.

Encryption

To encrypt a message using the Affine Cipher, we use the following formula:
E(xz)=(a-z4+b) modm

where:

e FE(x) is the encrypted letter,
e z is the numerical equivalent of the plaintext letter (e.g., A=0, B=1, ..., Z=25),
e a and b are the cipher keys, with a being coprime to m,

e m is the size of the alphabet (for English, m = 26).

Decryption

To decrypt a message, we use the inverse of the encryption formula:

D(y)=a' (y—>b) modm

where:

e D(y) is the decrypted letter,
e y is the numerical equivalent of the ciphertext letter,

e o~ ! is the modular multiplicative inverse of @ modulo m.

Example

Let’s encrypt and decrypt the message "HELLO” using the keys a = 5 and b = 8.

1. Encryption

Plaintext: "HELLO”

Numeric equivalents: H =7, F=4,L.=11,0 =14
m = 26 (for English alphabets)

Using the encryption formula:

EH)=(5-748) mod26=17 = R

E(E)=(5-448) mod26=2 = C(C

E(L)=(-1148) mod26=11 = L

E(O)=(5-1448) mod26=0 = A
Ciphertext: "RCLLA”

2. Decryption

The modular inverse of @ = 5 is a~! = 21.

Using the decryption formula:
DR)=21-(17—8) mod26=7 = H
D(C)=21-(2—8) mod26=4 = E
D(L)=21-(11-8) mod26=11 = L
D(A)=21-(0-8) mod26=14 = O

Original Text: "HELLO?”

2 Classical Cryptanalysis of Affine Cipher

Classical Cryptanalysis Techniques

The modern asymmetric cryptographic systems use separate keys for encryption and de-
cryption (public and private). This makes sure that the keys can’t be derived from one
another.In Contrast, although Affine ciphers have asymmetric keys they do not provide true

7asymmetry” due to the necessity of computing modular inverse of the encryption key a.
The same key pair a, b for encryption and decryption makes this cipher vulnerable to at-
tacks. Hence the classical approach of cryptanalysis involves identifying patterns and using
known properties of modular arithmetic to break the encryption.

Let us see how this is done in practice:

2.1 Frequency Analysis

The Affine Cipher maps each plaintext letter to a unique ciphertext letter, preserving fre-
quency patterns. Common English letters (e.g., "E,” ”T,” ”A”) retain high frequency in
ciphertext, allowing attackers to statistically match common letters in ciphertext with ex-
pected plaintext frequencies.

2.2 Known-Plaintext Attack

Given a small portion of known plaintext and its ciphertext equivalent, equations can be
set up to solve for a and b. For example, if 7A” and ”B” in plaintext map to "I” and ”Q”
in ciphertext:

E0)=(a-04+b) mod26=8 (for A —1)

E(1)=(a-1+4+b) mod26=16 (for B — Q)

These congruences solve a and b with basic algebraic operations. Classical decryption is
computationally simple, as the Affine cipher’s key space is small and manageable for direct
solving methods.

2.3 Chosen-Plaintext Attack

In a chosen-plaintext attack, the attacker selects specific plaintext letters (e.g., ”A” and
”B”) and obtains their ciphertexts to determine a and b. This method is highly efficient if
the attacker has control over plaintext.

2.4 Brute Force Attack

With only 312 possible key pairs (12 choices for a and 26 for b), brute-forcing is feasible. An
attacker can systematically test each pair on a ciphertext sample until readable plaintext
appears, a low complexity compared to modern ciphers.

2.5 Key Takeaways

Due to its limited key space and vulnerability to statistical and algebraic attacks, the Affine
Cipher is insecure by modern standards. Its structure allows attackers to exploit frequency
patterns and simple algebraic properties, making classical cryptanalysis computationally
straightforward and emphasizing the need for more complex, quantum-resistant crypto-
graphic techniques.

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

3 Quantum Cryptanalysis

In this assignment, we construct a quantum circuit that simulates modular arithmetic op-
erations alongside Grover’s search algorithm, which is known to provide significant com-
putational advantages over classical methods. Our circuit leverages modular addition and
multiplication functions, as well as the Grover Diffuser operator, to amplify the probability
of finding desired states within the solution space. This approach exemplifies the potential
of quantum circuits in breaking classical cryptosystems.

This is the giskit code that we implemented.

from qiskit import QuantumCircuit, transpile, assemble
from qiskit.circuit.library import QFT, MCXGate
from qiskit.visualization import plot_histogram
from giskit_aer import Aer
#Implementation of @-G Adder
def modular_adder(n):

gc = QuantumCircuit(n + 1)

for i in range(n):

gc.cx(i, n)

qc.barrier()

return qc
#Implementation of @-Q Binary Multiplier
def modular_multiplier(n):

gc = QuantumCircuit(2 * n + 1)

for i in range(n):

qc.cx(i, n + i)

gc.barrier()

qc.barrier()

return qc
#Setting up grover's diffuser
def grover_diffuser(n):

qc = QuantumCircuit(n)

qc.h(range(n))

qc.x(range(n))

gc.h(n - 1)
qc.append (MCXGate(n - 1), list(range(n)))
gc.h(n - 1)

qc.x(range(n))
gc.h(range(n))
return qc

#Initialising the plain text
n=3

gc = QuantumCircuit(2 * n + 1, n)
qc.x(0)

qc.x(1)

qc.x(2)

#The qubit is 111 we need to get this as highest number of times in output
qc.barrier()

qc.append (modular_adder(n), range(n + 1))

43

44

45

46

47

48

49

50

qc.barrier()

qc.append (modular_multiplier(n), range(2 * n + 1))
qc.barrier()

qc.append(grover_diffuser(n), range(n))
qc.barrier()

qc.measure(range(n), range(n))

sim = Aer.get_backend('gasm_simulator')
transpiled_qc = transpile(qc, sim)

job = sim.run(transpiled_qc, shots=1024)
results = job.result()

counts = results.get_counts()

print(counts)
plot_histogram(counts)

3.1 Function Explanations

Modular Addition Function: The modular_adder(n) function simulates modular addi-
tion in a quantum circuit, handling two n-bit numbers with modular overflow.

e Circuit Structure: The circuit is designed with n + 1 qubits—n for the number and
one ancilla qubit to handle overflow.

e Operation: Controlled-X (CX) gates simulate a simple carry operation, flagging
overflow through the ancilla qubit. This basic design serves as a placeholder for a
more complex modular adder and illustrates modular addition in a quantum context.

e Barrier Usage: A barrier() function is included to separate stages, enhancing the
clarity of circuit structure.

Modular Multiplication Function: The modular multiplier(n) function simulates
modular multiplication on a quantum circuit, where two n-bit numbers are multiplied mod-
ulo a set value.

e Circuit Structure: The circuit includes 2n + 1 qubits, with n for the multiplicand,
n for the multiplier, and one ancilla qubit for overflow.

e Operation: Controlled-X gates conditionally control each qubit in the multiplicand
on the multiplier qubits, simulating modular multiplication. This simplified structure
models the concept without implementing a full modular multiplier logic.

e Barrier Usage: A barrier () function adds visual structure and acts as a placeholder
for potential uncomputation steps.

Grover Diffuser Function: The grover diffuser(n) function applies Grover’s diffu-
sion operator, essential for Grover’s search algorithm. This operator amplifies the probability
of measuring the correct solution by inverting the phase of the target state.

e Circuit Structure: The diffuser uses Hadamard (H) gates, Pauli-X (X) gates, and

a multi-controlled Toffoli (MCX) gate.

e Operation:

3.2

3.3

— Initial Hadamard gates prepare a superposition state.
— Pauli-X gates invert the state.

— An MCX gate, acting as a controlled-Z on the final qubit, creates a phase inversion
for the target state.

— The state is restored with inverse Pauli-X and Hadamard gates.

Usage: This function increases the likelihood of measuring the desired state by selec-
tively amplifying it within the search space.

Main Circuit Setup

Purpose: Combines the modular addition, modular multiplication, and Grover Dif-
fuser functions in a single quantum circuit.

Steps:
— Step 1: Known plaintext states are initialized on the first n qubits, setting qubits
to predefined states to simulate specific input values.

— Step 2: The modular_adder function is applied, implementing a modular addi-
tion on the input values.

— Step 3: The modular multiplier function is applied, implementing modular
multiplication on the input states.

— Step 4: Finally, the Grover diffuser is applied to the first n qubits, increasing
the probability of measuring the correct solution state.

Measurement: The circuit concludes by measuring the first n qubits, capturing the
final state of operations.

Simulation and Results

Backend Selection: The circuit is simulated using the gasm_simulator backend
from Qiskit Aer.

Execution: The transpile function optimizes the circuit for the backend, and the
run function executes the circuit with 1024 shots.

Results: Measurement counts are extracted from the simulation, representing the
frequency of each outcome.

Visualization: The plot_histogram function displays the results, showing the prob-
ability distribution of measurement outcomes.

These are the results of 3-bit analysis:

We observe that the results are predictive and have greater accuracy in contrast with
the classical algorithms already tested.

Figure 1: Plaintext: 111 Figure 2: Plaintext: 000 Figure 3: Plaintext: 010

4 Efficiency of Quantum Cryptanalysis

4.1 Why Quantum Cryptography is Better?

Quantum cryptography offers several advantages over classical cryptography, largely due to
unique quantum properties that enhance security and efficiency. On mere comparison with
classical algorithms for affine ciphers, we observed that the Quantum had a little edge over
the classical algorithm, this could have been due to the plaintext size and lesser complexity

of 3 -bit plaintext but we are positive about its advantage from the papers that are already
published.

Aspect Classical Cryptography Quantum Cryptogra-
phy

Speed Slower for complex encryption Exponentially faster on
specific tasks

Resources Standard computing; scales poorly | High initially but improv-
ing

Security Vulnerable to brute force Provably secure by quan-
tum mechanics

Applicability | Widespread but future-vulnerable | Best for ultra-secure,
future-oriented applica-
tions

Table 1: Comparison of Classical and Quantum Cryptography

Quantum cryptography’s advantages in speed, security, and theoretical resilience make
it a strong successor to classical methods, especially in fields demanding the highest security.

4.2 Strengths and Weaknesses: Classical vs. Quantum Cryptanal-
ysis

This assignment compares classical and quantum cryptanalysis, noting their relevance to
cryptographic security’s future. Quantum approaches show speed and security advantages,
while classical methods remain practical and widely applicable today.

4.2.1 Comparison of Key Factors:

plex cryptosystems, with
brute-force approaches
that scale poorly as key
sizes grow.

Factor Classical Cryptanaly- | Quantum Cryptanaly-
sis sis
Speed Slow for breaking com- | Grover’s algorithm as dis-

cussed in above, offer sig-
nificant speedup in key
search and factorization,
making certain crypto-
graphic schemes vulnera-
ble to faster attacks.

Resource Requirements

Utilizes standard com-
puting resources, though
needs grow rapidly for
larger key sizes and more
secure algorithms.

Quantum cryptanalysis,
as we analyzed, requires
specialized hardware like
qubits and error correc-
tion, currently costly and
still maturing for practical

though limited by com-
putational capacity and

cryptanalysis.
Accuracy High accuracy in clas- | Quantum methods yield
sical attack simulations, | probabilistic =~ outcomes,

where accuracy improves
with repeated measure-

time. ments. Our findings
indicate that error rates
and noise in quantum
systems still impact relia-

bility.

Table 2: Comparison of Classical and Quantum Cryptanalysis Based on Our Findings

5 Limitations and Future Work

5.1 Limitation on the Number of Qubits

Breaking even simple classical ciphers on quantum hardware can require a significant num-
ber of qubits. However, current quantum computers are constrained by limited qubit counts,
which restricts the complexity of cryptanalysis they can perform. Currently, the available
qubit count for free access is 128, with a time restriction of 10 minutes per month. This limi-
tation reduces the frequency of testing and debugging, making the development of optimized
code challenging. To address these constraints, we opted to run our code on a quantum aer
simulator instead of actual quantum hardware. The code provided only works for a 3-bit
plaintext and if applied to actual textual plain text then would require more qubits which
is out of the resources we have in hand.

5.2 Error Correction Requirements

Quantum error correction (QEC) is essential for performing long and complex quantum
computations. QEC requires a large number of additional qubits to encode each logical
qubit, which is beyond the capacity of current quantum devices. Without effective error

correction, increasing the number of qubits leads to increased likelihood of erroneous results.
Consequently, we restricted our program to using only 3 qubits to ensure manageable error
rates and maintain simplicity in our implementation.

5.3 Efficiency of Grover’s Algorithm

While Grover’s algorithm offers a quadratic speedup over classical brute force, it is still
not exponential. For an affine cipher, which has a relatively small key space, the speedup
provided by Grover’s algorithm may not offer a significant practical advantage, especially
given that classical computers can solve such small key spaces almost instantaneously.

5.4 Interpretability and Verification

Quantum cryptanalysis presents challenges in interpreting and verifying quantum outputs.
For instance, repeated measurements are required to obtain reliable results due to the prob-
abilistic nature of quantum algorithms. This variability in results necessitates additional
verification steps and classical checks to confirm the correctness of solutions.

5.5 Future Directions

Developing Fault-Tolerant Quantum Computers: Advances in fault-tolerant quan-
tum computing and error-corrected qubits are anticipated to enable more reliable quantum
circuits in the future. These improvements would make quantum cryptanalysis more feasi-
ble and allow researchers to tackle more complex cryptographic algorithms beyond simple
ciphers.

Exploring Hybrid Quantum-Classical Approaches: Given current hardware limita-
tions, hybrid approaches combining quantum and classical techniques may offer practical
benefits. For instance, classical pre-processing followed by a quantum search on a reduced
keyspace could improve the feasibility of cryptanalysis using present-day quantum systems.

6 Conclusion

Through this assignment we understand that while classical cryptanalysis is practical and
accessible for current applications, quantum cryptanalysis promises significant advantages
in speed and scalability. As quantum computing hardware evolves, quantum cryptanalysis
will play a crucial role in shaping secure cryptographic standards, underscoring the need for
quantum-resistant encryption methods.

References

[1] “Quantum Cryptanalysis of Affine Cipher,” https://ieeexplore.ieee.org/
abstract/document/10597663

https://ieeexplore.ieee.org/abstract/document/10597663
https://ieeexplore.ieee.org/abstract/document/10597663

2]

A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-
Eighth Annual ACM Symposium on Theory of Computing, 1996, pp. 212-219. Available
at: https://dl.acm.org/doi/10.1145/237814.237866

Algorithms for Quantum Computation: Discrete Logarithms and Factoring. Proceedings
of the 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124-134.
Available at: https://ieeexplore.ieee.org/document/365700

Qiskit Documentation. Qiskit: An open-source SDK for working with quantum computers
at the level of pulses, circuits, and algorithms. Available at: https://qiskit.org/
documentation/

10

https://dl.acm.org/doi/10.1145/237814.237866
https://ieeexplore.ieee.org/document/365700
https://qiskit.org/documentation/
https://qiskit.org/documentation/

	Affine Ciphers
	Classical Cryptanalysis of Affine Cipher
	Frequency Analysis
	Known-Plaintext Attack
	Chosen-Plaintext Attack
	Brute Force Attack
	Key Takeaways

	Quantum Cryptanalysis
	 Function Explanations
	 Main Circuit Setup
	Simulation and Results

	Efficiency of Quantum Cryptanalysis
	Why Quantum Cryptography is Better?
	Strengths and Weaknesses: Classical vs. Quantum Cryptanalysis
	Comparison of Key Factors:

	Limitations and Future Work
	Limitation on the Number of Qubits
	Error Correction Requirements
	Efficiency of Grover's Algorithm
	Interpretability and Verification
	Future Directions

	Conclusion

